第九章 方差分析及回归分析答案

1、解 I: (**笔算法**) 设三批电池的寿命分别为 X_1, X_2, X_3 . 并且 X_j — $N(\mu_j, \sigma^2)$,

按题意需要检验 Ho: $\mu_1 = \mu_2 = \mu_3$

(1) 原假设 Ho: $\mu_1 = \mu_2 = \mu_3$

(2) 构造统计量:
$$F = \frac{S_A/s - 1}{S_F/n - s}$$
: $F(s - 1, n - s)$

(3) 求拒绝域:由 x=0.05, 查 F 分布表,得右侧分位点

$$\lambda = F_{\alpha}(s-1, n-s) = F_{0.05}(2,12) = 3.89$$

∴ 拒绝域为 F ≥ λ = 3.89

(4) 计算 F 的值—— 将原始数据计算如下表

序	A厂电池		В 厂⊨	B厂电池		电池
号	X_{i1}	$(x_{i1})^2$	x_{i2}	$(x_{i2})^2$	x_{i1}	$(x_{i3})^2$
1	40	1600	26	676	39	1521
2	42	1764	28	784	50	2500
3	48	2304	34	1156	40	1600
4	45	2025	32	1024	50	2500
5	38	1444	30	900	43	1849
\sum	213	9137	150	4540	222	9970

$$T_1 = 213$$
, $T_2 = 150$, $T_3 = 222 \Rightarrow T = 213 + 150 + 222 = 585$

$$\sum_{j=1}^{3} \sum_{i=1}^{5} x_{ij}^{2} = 9137 + 4540 + 9970 = 23647$$

$$S_T = \sum_{i=1}^{3} \sum_{j=1}^{5} x_{ij}^2 - \frac{T^2}{15} = 23647 - \frac{585^2}{15} = 832$$

$$S_A = \sum_{j=1}^{3} \frac{T_j^2}{n_j} - \frac{T^2}{15} = \frac{1}{5} (213^2 + 150^2 + 222^2) - \frac{585^2}{15} = 616$$

$$S_E = S_T - S_A = 832 - 616 = 216$$

(5) 推断:

方差分析表

方差来源	平方和	自由度	均方和	F值
工厂误差	616	2	308	17. 3
偶然误差	216	12	18	

- : $F = 17.1 > \lambda = 3.89$
- ∴ 拒绝原假设,即三个工厂的电池寿命有显著差异。

解II:(电算法)把原始数据输入计算机软件,进行方差分析,得分析结果描述性统计量

变量	例数	算术均数	标准差	标准误
X1	5	42.6000	3. 9749	1. 7776
X2	5	30.0000	3. 1623	1.4142
Х3	5	44.0000	5. 3198	2.3791

① 单因素三水平方差分析

- : $F = 17.07 > \lambda = 3.89$
- ∴ 拒绝原假设,即三个工厂的电池寿命有显著差异。
- ②单因素三水平两两对比方差分析

变量		X_{1}	X_2	X_3
	平均值	42.6	30.0	44.0
X1	42.6			
X2	30.0	4.69		
Х3	44.0	0.67	5. 36	

分位点 $F_{\alpha}(s-1,n-s) = F_{0.05}(1,8) = 5.32$

- $: F(X_1, X_2) = 4.69 < \lambda = 5.32$ $: X_1 \Rightarrow X_2$ 没有显著差异;
- $: F(X_1, X_3) = 0.67 < \lambda = 5.32$ $: X_1 和 X_3$ 没有显著差异;
- $: F(X_2, X_3) = 5.36 > \lambda = 5.32$: $X_2 = 3.34 \times 3.34 \times$
- 2、解: (电算法)设三个班级的平均分数分别为 X_1, X_2, X_3 而且 X_i : $N(\mu_i, \sigma^2$.

若问各班级的平均分数有无显著差异,则需检验 $H_0: \mu_1 = \mu_2 = \mu_3$,现将原始数据输入计算机软件,进行方差分析,得分析结果如下:

描述性统计量

变量	例数	算术均数	标准差	标准误
X1	12	68. 0833	18. 5446	5. 3634
X2	15	71. 4000	18. 1100	4.6760
Х3	13	64. 4615	20. 3618	536473

电脑计算得 F 值=0.46 ; 分位点 $\lambda = F_{\alpha}(s-1,n-s) = F_{0.05}(2,37) = 3.26$

- ∴ F $\stackrel{\text{di}}{=}$ 0. 46 < $\lambda = F_{\alpha}(s-1, n-s) = F_{0.05}(2,37) = 3.26$
- :接受原假设 $H_0: \mu_1 = \mu_2 = \mu_3$,即各班级的平均分数没有显著差异。
- 3、 解: (电算法)设五种抗生素与血浆蛋白质结合的百分比分别为 X_1, X_2, X_3 、 X_4 、 X_5 . 而且 X_j : $N(\mu_j, \sigma^2)$. 若问这些百分比的均值有无显著的差异,则需作 检验 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$,现将原始数据输入计算机软件,进行方差分析,得分析结果如下:

描述性统计量

变量	例数	算术均数	标准差	标准误
X1	4	28.6000	3. 2177	1.6088
X2	4	31. 3750	3. 1711	1.5855
Х3	4	7.8250	2. 3838	1. 1919
Х4	4	19.0750	1.8062	0.9031
Х5	4	27.8000	3. 9900	1.9950

① 单因素五水平方差分析

电脑计算得 F 值=40.88 ; 分位点 $\lambda = F_{\alpha}(s-1,n-s) = F_{0.05}(4,15) = 3.06$

- : F 值=40.88 $> \lambda = F_{0.05}(4,15) = 3.06$
- :. 拒绝 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$, 五种抗生素与血浆蛋白质结合的百分比有显著差异。

②单因素三水平两两对比方差分析

\sim . \square	74. — 74. 1 1	111111111111111111111111111111111111111				
变量		X_{1}	X_2	X_3	X_3	X_3
	平均值	28.6000	31. 375	7.825	19.075	27.800
X1	28.600					
X2	31. 575	1.30				
Х3	7.825	9. 76	11.07			
X4	19.075	4. 48	5. 78	5. 29		
Х5	27.800	0.38	1.68	9.39	4. 10	

分位点 $\lambda = F_{\alpha}(s-1,n-s) = F_{0.05}(1,6) = 5.99$

- $: F(X_1, X_2) = 1.30 < \lambda = 5.99$ $: X_1 \Rightarrow X_2$ 没有显著差异
- $: F(X_1, X_3) = 9.76 > \lambda = 5.99$ $: X_1 = AX_3$ 有显著差异
- $: F(X_1, X_4) = 4.48 < \lambda = 5.99$ $: X_1 \Rightarrow X_2 \Rightarrow X_3 \Rightarrow X_4 \Rightarrow X_4 \Rightarrow X_5 \Rightarrow X_5$

$$: F(X_1, X_5) = 0.38 < \lambda = 5.99$$
 : $X_1 = 0.38 < \lambda = 5.99$: $X_2 = 0.38 < \lambda = 5.99$: $X_1 = 0.38 < \lambda = 5.99$: $X_2 = 0.38 < \lambda = 5.99$: $X_1 = 0.38 < \lambda = 5.99$: $X_2 = 0.38 < \lambda = 5.99$: $X_1 = 0.38 < \lambda = 5.99$: $X_2 = 0.38 < \lambda = 5.99$: $X_1 = 0.38 < \lambda = 5.99$: $X_2 = 0.38 < \lambda = 5.99$: $X_2 = 0.38 < \lambda = 5.99$: $X_3 = 0.38 < \lambda = 5.99$: $X_4 =$

$$: F(X_2, X_3) = 11.07 > \lambda = 5.99$$
 $: X_2 \to X_3$ 有显著差异

$$: F(X_2, X_4) = 5.78 < \lambda = 5.99$$
 $: X_2 \Rightarrow X_4$ 没有显著差异

$$: F(X_2, X_5) = 1.68 < \lambda = 5.99$$
 $: X_2 \Rightarrow X_5$ 没有显著差异

$$: F(X_3, X_5) = 9.39 > \lambda = 5.99$$
 : $X_1 \pi X_2$ 有显著差异

$$: F(X_4, X_5) = 4.10 < \lambda = 5.99$$
 $: X_4 \Rightarrow X_5$ 没有显著差异

6、解 [:(笔算法)

(1) 作散点图 (略),因为散点大致在一条直线上,所以黄铜延性 Y 与退火温度 x 线性相关,设 $Y = a + bx + \varepsilon$, ε : $N(0,\sigma^2)$

(2) 求回归系数♣️ ——将原始数据列表计算如下

序号	x_i	y_i	x_i^2	y_i^2	$x_i y_i$
1	300	40	90000	1600	1200
2	400	50	160000	2500	20000
3	500	55	250000	3025	27500
4	600	60	360000	3600	36000
5	700	67	490000	4489	46900
6	800	70	640000	4900	56000
\sum	3300	342	1990000	20114	198400
_					

$$S_{xx} = \sum_{i=1}^{6} x_i^2 - \frac{1}{6} (\sum_{i=1}^{6} x_i)^2 = 1990000 - \frac{1}{6} \times 3300^2 = 17500$$

$$S_{xy} = \sum_{i=1}^{6} x_i y_i - \frac{1}{6} (\sum_{i=1}^{6} x_i) (\sum_{i=1}^{6} y_i) = 198400 - \frac{1}{6} \times 3300 \times 342 = 10300$$

$$\therefore \hat{B} = \frac{S_{xy}}{S_{xx}} = \frac{10300}{175000} = 0.058857$$

$$\mathcal{E} = \overline{y} - \mathcal{E}\overline{x} = \frac{342}{6} - 0.058857 \times \frac{3300}{6} = 24.62865$$

解Ⅱ: (电算法) 将原始数据输入计算机软件,得到结果如下:

回归系数的最小回归结果

	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /		
变量名	回归系数	标准误	
常数项	24. 62857	2. 5544	
x	. 5885714E—01	. 0044	
σ	1.855494		

$$b = 0.05885714$$

$$= 24.62857$$

故黄铜延性 Y 与退火温度 x 的线性回归方程是

 $\mu = 24.62857 + 0.05885714x$

(续)解I:(笔算t检验法)

(1) 原假设 $H_0:b=0$ (Y与x的线性关系不显著)

(2) 构造统计量:
$$T = \frac{\$}{\mu} \sqrt{S_{xx}}$$
: $t(n-2)$

(3) 求拒绝域: 取 $\alpha = 0.05$, 查F分布得双侧分位点 $\lambda = t_{\frac{\alpha}{2}}(n-2) = t_{0.025}(4) = 2.7764$

(4) 计算 T 的实测值:

$$S_{xx} = 17500, \quad S_{xy} = 10300$$

$$S_{yy} = 20114 - \frac{1}{6} \times 342^{2} = 620$$

$$S_{yy} = \frac{1}{n-2} [S_{yy} - BS_{xx}] = \frac{1}{4} [620 - 0.058857 \times 10300] = 2.75458$$

$$b = 1.6597$$

$$\therefore T = \frac{\$}{\cancel{\mu}} \sqrt{S_{xx}} = \frac{0.058857}{1.6597} \sqrt{175000} = 14.83$$

即黄铜延性Y与退火温度x的线性回归方程显著。

解II: (笔算F检验法)

(1) 原假设 H_0 :b=0 (Y与x的线性关系不显著)

(2) 构造统计量:
$$F = \frac{S_{\Box}}{S_{\parallel}/n-2}$$
: $F(1,n-2)$

(3) 求拒绝域: $\mathbf{R} \alpha = 0.05$, 查F分布得右侧分位点

$$\lambda = F_{\alpha}(1, n-2) = F_{0.05}(1, 4) = 7.71$$

- ∴拒绝域是F≥λ=7.71
- (4) 计算 F 的实测值:

$$S_{\text{E}} = S_{yy} = 20114 - \frac{1}{6} \times 342^{2} = 620$$

$$S_{\text{E}} = S_{xy} = 0.058857 \times 10300 = 606.227$$

$$S_{\text{m}} = S_{\text{m}} - S_{\text{m}} = 620 - 606.227 = 13.773$$

$$\therefore F = \frac{S_{\text{pl}}}{S_{\text{pl}}/n-2} = \frac{606.227}{13.773/4} = 176.06$$

(5) 推断: $: F = 176.06 \ge \lambda = 7.71$: 拒绝原假设 $H_0: b = 0$ 即黄铜延性Y与退火温度x的线性回归方程显著。

解III: (电算 F 检验法) 计算机的检验结果如下

方差分析

变异来源	自由度	离差平方和	均方和	F值
总变异	5	620.000		
回 归	1	606. 229	606. 229	176.08
剩 余	4	13.7714	3. 44286	

- $: F = 176.06 \ge \lambda = 7.71$: 拒绝原假设 $H_0: b = 0$

即黄铜延性Y与退火温度x的线性回归方程显著。

7、解:

(1) 作散点图(略), 因为散点大致在一条直线上, 所以电阻 Y 与钢线含碳 量 x 线性相关, 设 $Y = a + bx + \varepsilon$, $\varepsilon : N(0, \sigma^2)$

(2) 求回归方程 $Y = \partial + \partial x$

①笔算法求回归方程——将数据计算如下

序号	X_i	y_i	x_i^2	y_i^2	$x_i y_i$
1	0.10	15	0.01	225	1. 50
2	0.30	18	0.09	324	5. 40
3	0.40	19	0. 16	361	7. 60
4	0.55	21	0. 3025	441	11. 55
5	0.70	22.6	0. 49	510. 76	15.82
6	0.80	23.8	0.64	566.64	19.04

7	0.95	26	0. 9025	676. 00	24. 70
Σ	3. 80	145. 40	2. 595	3104. 20	85. 61

$$S_{xx} = \sum_{i=1}^{7} x_i^2 - \frac{1}{7} (\sum_{i=1}^{7} x_i)^2 = 2.595 - \frac{1}{7} \times 3.8^2 = 0.532142857$$

$$S_{yy} = \sum_{i=1}^{7} y_i^2 - \frac{1}{7} (\sum_{i=1}^{7} y_i)^2 = 3104.2 - \frac{1}{7} \times 145.4^2 = 84.03428572$$

$$S_{xy} = \sum_{i=1}^{7} x_i y_i - \frac{1}{7} (\sum_{i=1}^{7} x_i) (\sum_{i=1}^{7} y_i) = 85.61 - \frac{1}{7} \times 3.8 \times 145.4 = 6.678571429$$

$$\therefore \mathring{b} = \frac{S_{xy}}{S_{xx}} = \frac{6.678571429}{0.532142857} = 12.5503$$

$$\mathcal{L} = \frac{1}{y} - \mathcal{L} = \frac{1}{7} \times 145.4 - 12.5503 \times \frac{1}{7} \times 3.8 = 13.9584$$

- ∴ 电阻 Y 与钢线含碳量 x 的线性方程是 ¥=13.9584+12.5503x
- ②电算法求回归方程——将原始数据输入计算机软件,得计算结果如下

回归系数的最小二乘估计结果

变量名	回归系数	标准误
常数项 X σ	13. 95839 12. 55033 . 2078332	. 1735 . 2849

- ∴ 电阻 Y 与钢线含碳量 x 的线性方程是 ¥=13.95839+12.55033x
- (3) 方差 σ^2 的无偏估计值是

$$\sigma^2 = \frac{S_{\text{pl}}}{n-2} = \frac{1}{5} [S_{yy} - \delta S_{xy}] = \frac{1}{5} [84.0343 - 12.5503 \times 6.6786] = 0.0432$$

标准差 σ 的无偏估计值是 σ =0. 207846

(4) 检验假设 $H_0:b=0$, $H_1:b\neq 0$

笔算法检验——步骤如下

① 原假设 $H_0:b=0$, 备择假设 $H_1:b\neq 0$

② 构造统计量:
$$T = \frac{\hbar}{H} \sqrt{S_{xx}}$$
: $t(n-2)$

③ 求拒绝域: 取
$$\alpha = 0.05$$
, 查F分布得双侧分位点
$$\lambda = t_{\frac{\alpha}{2}}(n-2) = t_{0.025}(5) = 2.5706$$

④计算 T 的实测值:

$$S_{xx} = 0.532142857, \quad S_{xy} = 6.678571429$$

$$S_{yy} = 3104.2 - \frac{1}{7} \times 145.4^2 = 84.03428572$$

⊌ = 0.207846 (前面计算结果)

$$\therefore T = \frac{\$}{H} \sqrt{S_{xx}} = \frac{12.5503}{0.207846} \times \sqrt{0.532142857} = 44.05$$

方差分析(回归方程显著性检验)

变异来源	自由度	离差平方和	均方	f-值	 p-值
总变异 回归 剩余	6 1 5	84. 0343 83. 8183 . 215973	83. 8183 . 431946E-01	1940. 48	. 0000

[∵]F 值=1940. $48 > \lambda = 2.5706$

∴ 拒绝原假设 H_0 :b=0

即电阻Y与钢线含碳量x的线性关系高度显著。

8、解:

- (1) 画出散点图(略),所有散点大致在一条直线上,因此体积 Y 与重量 x 直线相关。
 - (2) 求 Y 关于 x 的线性回归方程 $\mathbf{P} = \mathbf{A} + \mathbf{b} x$
 - ①笔算法求回归方程——将数据计算如下

序号	X_i	y_i	x_i^2	y_i^2	$x_i y_i$
1	17. 1	16. 7	292. 41	278. 89	285. 57
2	10.5	10. 4	110. 25	108. 16	109. 20
3	13.8	13. 5	190. 44	182. 25	186. 30
4	15.7	15. 7	246. 49	246. 49	246. 49
5	11.9	11.6	141.61	134. 56	138. 04
6	10.4	10. 2	108. 16	104. 04	106. 08
7	15.0	14. 5	225. 00	210. 25	217. 50
8	16.0	15.8	256.00	249.64	252. 80
9	17.8	17.6	316.84	309. 76	313. 28
10	15.8	15. 2	249.64	231. 04	240. 16
11	15. 1	14.8	228. 01	219.04	223. 48
12	12. 1	11. 9	146. 41	141.61	143. 99
13	18.4	18. 3	338. 56	334. 89	336. 72
14	17. 1	16. 7	292. 41	278. 89	285. 57
15	16.7	16.6	278. 89	275. 56	277. 72
16	16.5	15. 9	272. 25	252.81	262. 35
17	15. 1	15. 1	228. 01	228. 01	228. 01
18	15. 1	14. 5	228. 01	210. 25	218. 95
Σ	270. 1	265. 0	4149. 39	3996. 14	4071.71

$$\overline{x} = \frac{270.1}{18} = 15.006, \qquad \overline{y} = \frac{265}{18} = 14.722$$

$$S_{xx} = 4149.39 - \frac{1}{18} \times 270.1^2 = 96.389$$

$$S_{yy} = 3996.14 - \frac{1}{18} \times 256^2 = 94.751$$

$$S_{xy} = 4071.71 - \frac{1}{18} \times 270.1 \times 265 = 95.238$$

$$\hat{B} = \frac{S_{xy}}{S_{yy}} = \frac{95.238}{96.389} = 0.988$$

$$\mathcal{E} = \bar{y} - \mathcal{E} \bar{x} = 14.772 - 0.988 \times 15.006 = -0.104$$

- ∴儿童体积 Y 与儿童重量 x 的线性方程是 ¥=-0.104+0.988x
- ②**电算法求回归方程**——将数据输入计算机软件,进行回归分析,结果如下: 回归系数的最小二乘结果

	变量名	回归系数	标准误	t-	p-	
Ī	常数项	-0. 1040468	0.3120	-0.33	0.7431	
	X1	0. 9880520	0.0205	48.08	0.0000	

$$g$$
、解: (1) 略···· ; (2) 略··· ; (3) 求函数关系式: $Y = ae^{bx}$.

两边取对数, $\ln Y = \ln a + bx + \ln \varepsilon$, $\ln \varepsilon : N(0, \sigma^2)$

$$\Rightarrow Y' = \ln Y$$
, $x' = x$, $a' = \ln a$, $b' = b$, $\varepsilon' = \ln \varepsilon$

∴原函数式变为
$$Y' = a' + b'x' + \varepsilon'$$
, ε' : $N(0, \sigma^2)$

① 求 Y' 对 x' 的线性回归方程,将数据 (x_i, y_i) 变为 (x_i', y_i') ,并计算如下:

序号	X	у	x' = x	$y' = \ln y$	$(x')^2$	$(y')^2$	x'y'
1	3	28	3	3. 33	9	11. 0889	9. 99
2	3	33	3	3. 50	9	12. 2500	10. 50
3	3	22	3	3.09	9	9. 5481	9. 27
4	4	10	4	2.30	16	5. 2900	9. 20
5	4	36	4	3. 58	16	12.8164	14. 32
6	4	24	4	3. 18	16	10. 1124	12. 72
7	9	15	9	2.71	81	7. 3441	24. 39
8	9	22	9	3.09	81	9. 5481	27. 81
9	9	10	9	2.30	81	5. 2900	20. 70
10	15	6	15	1.79	225	3. 2041	26. 85
11	15	14	15	2.64	225	6. 9696	39. 60
12	15	9	15	2. 20	225	4.8400	33. 30
13	40	1	1		1600		
14	40	1	1		1600		
Σ			173	33. 71	4193	98. 3000	238. 35

$$\overline{x'} = \frac{173}{14} = 12.3571, \qquad \overline{y'} = \frac{33.71}{14} = 2.4078$$

$$S_{xx} = 4193 - \frac{173^2}{14} = 2055.2143$$
 ; $S_{xy} = 238.35 - \frac{173 \times 33.71}{14} = -178.2091$

$$\therefore b = \frac{S_{xy}}{S_{xy}} = \frac{-178.2093}{2055.2143} = -0.0867 ;$$

$$x = \overline{y'} - b\overline{x'} = 2.4078 - (-0.0867) \times 12.3571 = 3.4792$$

故 Y' 对 x' 的线性回归方程是 Y' = 3.4792 - 0.0867x'

② 求 Y 对 x 的函数关系式

由 Y' = 3.4792 - 0.0867x' 得 $\ln Y = 3.4792 - 0.0867x$

 $\therefore Y = e^{3.4792-0.0867x}$, 即 Y 对 x 的函数关系式是 $Y = 32.42e^{-0.0867x}$

11、解: 电算法

(1) 设 $\mu(x_1, x_2, x_3)$ $\to b_0$ $\to b_1 x_1$ $\to b_2 x_2$ $\to b_3 x_3$,将原始数据编成下列形式,并输入计算机统计软件。

序号	X_1	X_2	X_3	Y(得率)
1	-1	-1	-1	7.6
2	-1	-1	1	10.3
3	-1	1	-1	9. 2
4	-1	1	1	10. 2
5	1	-1	-1	8.4
6	1	-1	1	11. 1
7	1	1	-1	9.8
8	1	1	1	12.6

输入计算机统计软件后,进行线性回归分析,得统计结果如下:

回归系数的最小二乘估计结果及显著性检验

变量名	回归系数	标准误	t−值	p-值	标准化系数
常数项	9. 900000	0. 2073	47. 76	0.0000	
X_1	0. 5750003	0.2073	2.77	0.0501	0. 3942
X_2	0.5500002	0.2073	2.65	0.0568	0.3771
X_3	1. 1500000	0.2073	5. 55	0.0052	0. 7884
σ	0. 5863022				

F检验法的方差分析

变异来源	自由度	离差平方和	均方和	F值	p-值
总偏差	7	17. 0200			
回归	3	15.6450	5. 21500	15. 17	0.0119
剩余	4	1. 37500	0. 343750		

计算机检验结果,F值=15.17,F分布的右侧分位点为 $\lambda = F_{0.05}(3,4) = 6.59$

- : F 值=15. 17 > $\lambda = F_{0.05}(3,4) = 6.59$
- \therefore Y 与 x_1, x_2, x_3 的线性关系显著,故 Y 的多元线性回归方程为

$$Y=9.900+0.575x_1+0.550x_2+1.150x_3$$

(2) 设 $\mu(x_1,x_2,x_3)=\beta_0+\beta_1x_1+\beta_3x_3$,将原始数据编成下列形式,并输入计算

机统计软件。

序号	X_1	X_3	Y(得率)
1	-1	-1	7. 6
2	-1	1	10. 3
3	-1	-1	9. 2
4	-1	1	10. 2
5	1	-1	8. 4
6	1	1	11. 1
7	1	-1	9.8
8	1	1	12.6

输入计算机统计软件后,进行线性回归分析,得统计结果如下: 回归系数的最小二乘估计结果及显著性检验

变量名	回归系数	标准误	t−值	p-值	标准化系数
常数项 X1 X3 o	9. 900000 0. 5750003 1. 150000 0. 8712062	0. 3080 0. 3080 0. 3080	32. 14 1. 87 3. 73	0. 0000 0. 1209 0. 0135	0. 3942 0. 7884

F检验法的方差分析

变异来源	自由度	离差平方和	均方	f−值	p-值
总变异 回归 剩余	7 2 5	17. 0200 13. 2250 3. 79500	6. 61250 0. 759000	8.71	. 0235

计算机检验结果,F值=8.71,F分布的右侧分位点为 $\lambda = F_{0.05}(2,5) = 5.79$

- : F 值=8. 71 > $\lambda = F_{0.05}(2,5) = 5.79$
- \therefore Y 与 x_1, x_3 的线性关系显著,故 Y 的多元线性回归方程为

 $Y=9.900+0.575x_1+1.150x_3$

多元线性回归展示题

解: 电算法——将原始数据输入统计软件,即得以下运算结果:

回归系数的最小二乘估计结果及显著性检验

 变量名	回归系数	标准误	
常数项	62. 40999	70. 0687	
X1	1. 551058	. 7447	
X2	. 5101243	. 7238	
Х3	. 1018737	. 7547	
X4	1441204	. 7090	
σ	2. 446008		

F 检验法的方差分析

变异来源	自由度	离差平方和	均方	f−值	p-值
总变异 回归 剩余	12 4 8	2715. 76 2667. 90 47. 8637	666. 975 5. 98296	111. 48	. 0000

应用计算机软件计算结果,得所求的线性回归方程为

$$1 = 62.4099 + 1.5511x_1 + 0.5101x_2 + 0.1019x_3 - 0.1441x_4$$

再经 F 检验法检验,f 值为 111. 48,显著大于临界值 $\lambda = F_{0.05}(4,8) = 3.84$,所以 拒绝假设 H_0 : b=0, 故得水泥在凝固时放出的热量 Y (卡/克)与水泥中四种化学 成分 X_1 , X_2 , X_3 , X_4 的线性回归方程为

 $Y=62.4099+1.5511x_1+0.5101x_2+0.1019x_3-0.1441x_4$